organic compounds

 $0.10 \times 0.10 \times 0.10$ mm

T = 293 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-Dibenzoyl-1,1'-(3,6-dioxaoctane-1,8-diyl)dithiourea

Mouhamadou Moustapha Sow,^a Ousmane Diouf,^a Aliou Hamady Barry,^b Mohamed Gaye^a* and Abdou Salam Sall^a

^aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ^bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania Correspondence e-mail: mlgayeastou@yahoo.fr

Received 15 January 2009; accepted 17 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.128; data-to-parameter ratio = 13.8.

In the molecule of the title compound, $C_{22}H_{26}N_4O_4S_2$, the central O-CH₂-CH₂-O chain adopts a synclinal conformation [torsion angle = 65.0 (2)°]. The crystal structure is stabilized by intramolecular N-H···O=C and intermolecular N-H···O-C hydrogen bonds.

Related literature

For related structures, see: Avşar *et al.* (2003); Arslan *et al.* (2004); Du & Du (2008); Ding *et al.* (2008).

Experimental

Crystal data

$C_{22}H_{26}N_4O_4S_2$	c = 16.4106 (5) Å
$M_r = 474.59$	$\alpha = 81.018 \ (2)^{\circ}$
Triclinic, P1	$\beta = 83.364 \ (2)^{\circ}$
a = 7.9718 (2) Å	$\gamma = 80.450 \ (2)^{\circ}$
b = 9.2177 (3) Å	V = 1169.60 (6) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

Data collection

Nonius Kappa CCD diffractometer	4211 independent reflections
Absorption correction: none	2737 reflections with $I > 2\sigma(I)$
7989 measured reflections	$R_{\rm int} = 0.030$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.128 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 4211 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.41 \text{ e } \text{\AA}^{-3} \\ 305 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.50 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1$ $N3-H3\cdotsO4$ $N4-H4\cdotsO2^{i}$	0.82(3)	1.99 (3)	2.648 (3)	136 (2)
	0.83(3)	2.01 (3)	2.632 (3)	132 (3)
	0.82(3)	2.48 (3)	3.290 (3)	170 (2)

Symmetry code: (i) -x + 2, -y, -z + 1.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No.6314PS804).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2217).

References

Arslan, H., Flörke, U. & Külcü, N. (2004). Acta Chim. Slov. 51, 787–792.
Avşar, G., Arslan, H., Haupt, H.-J. & Külcü, N. (2003). Turk. J. Chem. 27, 281– 285.

- Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, 0658.
- Du, H.-T. & Du, H.-J. (2008). Acta Cryst. E64, 01632-01633.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, 0569 [doi:10.1107/S1600536809005662]

3,3'-Dibenzoyl-1,1'-(3,6-dioxaoctane-1,8-diyl)dithiourea

M. M. Sow, O. Diouf, A. H. Barry, M. Gaye and A. S. Sall

Comment

The title compound, $C_{22}H_{26}N_4O_4S_2$, was characterized by ¹H and ¹³C NMR, solid-state IR and X-ray crystallographic techniques. The X-ray structure determination reveals that the compound crystallizes in the triclinic space group *P*T with one molecule in the asymmetric unit. The molecular geometry is illustrated in Fig. 1. The C—S bond lengths of 1.665 (3) Å and 1.659 (2) Å and the C—O bond lengths of 1.220 (3) Å and 1.222 (3) Å are double bonds character and are comparable to those observed for 1-(biphenyl-4-carbonyl)-3-*p*-tolyl-thiourea [1.647 (3) Å for C—S, 1.217 (3) and 1.224 (3) Å for C—O respectively (Arslan *et al.*, 2004)]. The C—N bond lengths are in the range 1.310 (3)–1.451 (3) Å, and are shorter than the normal single C—N bond length (Avşar *et al.*, 2003). The carbonyl group forms an intramolecular hydrogen bonds with the N2—H2 and the N3—H3 groups, which forms two six-membered rings (C8/N1/C7/O1/H2/N2 and C15/N4/C16/O4/H3/N3) structure (Fig. 2); H2···O1 and the H3···O4 separations are respectively 1.99 (3) Å and 2.01 (3) Å. There is an intermolecular hydrogen bonding between N4—H4 and the O atom of the ethoxy group of a symmetry-related molecule, the H4···O2 (-*x* + 2, -*y*, -*z* + 1) separation being 2.48 (3) Å (Table 1). The structure of the title compound is related to other thiourea derivatives (*e.g.* Ding *et al.*, 2008; Du & Du, 2008).

Experimental

Benzoyl chloride (7.10 g, 50 mmol) was reacted with potassium thiocyanate (4.86 g, 50 mmol) in CH₃OCH₃ (50 ml) solution, to give the corresponding benzoyl isothiocyanate after one hour under refluxing. After cooling to room temperature, a solution of 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3.70 g, 25 mmol) in CH₃OCH₃ (20 ml) was added dropwise to benzoyl isothiocyanate. After three hours under stirring, 200 ml of HCl 1 *M* was added. A yellow oil was isolated and treated with diethyl ether to give the title compound which is washed with diethyl ether twice. Yield: 55.9%. m.p. 415–419 K. Anal. Calc. for C₂₂H₂₆N₄O₄S₂: C 55.68, H 5.52, N 11.81%. Found: C 55.70, H 5.45, N 11.65%. Selected IR data (cm⁻¹, KBr pellet): 3424, 3218 (v NH), 1667 (v C?O), 1160 (v C?S). ¹H-NMR (200 MHz, DMSO-d₆, δ , p.p.m.): 3.45 (t, 4H, N—CH₂); 3.63 (s, 4H, O—CH₂); 3.70 (t, 4H, O—CH₂); 7.21–7.92 (m, 10H, C₆H₅); 11.01 (s, 2H, NH); 11.41 (s, 2H, NH). ¹³C-NMR (50 MHz, DMSO-d₆, δ , p.p.m.): 45.21 (N—CH₂); 68.09 (O—CH₂); 70.12 (O—CH₂); 133.31–127.62 (C₆H₅); 1168.60 (C?O); 180.81 (C?S). A CH₃Cl solution of the title compound was mixed with ethanol (1/1). After several days, colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement

H atoms of NH groups were located in a difference map and refined freely. Others H atoms were placed geometrically and refined with a riding model. $U_{iso}(H)$ for H was calculated as 1.2 U_{eq} of the carrier atom.

Figures

Fig. 1. An *ORTEP* view of the asymmetric unit of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Molecular representation of the compound showing hydrogen bonds (dashed lines).

3,3'-Dibenzoyl-1,1'-(3,6-dioxaoctane-1,8-diyl)dithiourea

Crystal data	
$C_{22}H_{26}N_4O_4S_2$	Z = 2
$M_r = 474.59$	$F_{000} = 500$
Triclinic, P1	$D_{\rm x} = 1.347 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 415 K
<i>a</i> = 7.9718 (2) Å	Mo K α radiation $\lambda = 0.71073$ Å
b = 9.2177 (3) Å	Cell parameters from 4206 reflections
c = 16.4106 (5) Å	$\theta = 1.0 - 25.4^{\circ}$
$\alpha = 81.018 \ (2)^{\circ}$	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 83.364 \ (2)^{\circ}$	<i>T</i> = 293 K
$\gamma = 80.450 \ (2)^{\circ}$	Prism, yellow
V = 1169.60 (6) Å ³	$0.10 \times 0.10 \times 0.10$ mm

Data collection

Nonius KappaCCD diffractometer	2737 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.030$
Monochromator: graphite	$\theta_{\rm max} = 25.2^{\circ}$
T = 293 K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -11 \rightarrow 11$
7989 measured reflections	$l = -19 \rightarrow 19$
4211 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_0^2) + (0.0614P)^2 + 0.2609P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.008$
4211 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
305 parameters	$\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.37094 (10)	0.16706 (9)	0.86251 (5)	0.0713 (3)
S2	1.26452 (13)	-0.27342 (8)	0.52516 (4)	0.0790 (3)
01	0.7377 (3)	0.4586 (2)	0.91685 (11)	0.0711 (6)
02	0.81088 (19)	0.39803 (17)	0.67050 (9)	0.0482 (4)
03	1.12041 (19)	0.24744 (17)	0.60508 (10)	0.0472 (4)
O4	1.2463 (3)	0.1608 (2)	0.35665 (11)	0.0740 (6)
N1	0.5641 (3)	0.2839 (3)	0.94678 (14)	0.0527 (6)
H1	0.530 (3)	0.224 (3)	0.9815 (16)	0.049 (8)*
N2	0.5680 (3)	0.3729 (2)	0.80784 (13)	0.0492 (5)
H2	0.639 (3)	0.422 (3)	0.8172 (16)	0.056 (8)*
N3	1.2498 (3)	0.0165 (3)	0.50822 (13)	0.0506 (5)
Н3	1.236 (3)	0.099 (3)	0.4798 (17)	0.063 (9)*
N4	1.2073 (3)	-0.0786 (2)	0.39123 (12)	0.0465 (5)
H4	1.190 (3)	-0.154 (3)	0.3741 (15)	0.052 (8)*
C1	0.7116 (3)	0.3433 (3)	1.05616 (14)	0.0456 (6)
C2	0.8101 (3)	0.4370 (3)	1.08034 (16)	0.0539 (6)
H2A	0.8497	0.5115	1.0416	0.065*
C3	0.8498 (4)	0.4211 (3)	1.16088 (18)	0.0639 (7)
H3A	0.9169	0.4840	1.1763	0.077*
C4	0.7902 (4)	0.3120 (3)	1.21864 (18)	0.0692 (8)
H4A	0.8165	0.3012	1.2732	0.083*
C5	0.6923 (4)	0.2194 (4)	1.19573 (19)	0.0771 (9)
Н5	0.6513	0.1464	1.2350	0.093*
C6	0.6537 (4)	0.2335 (3)	1.11472 (17)	0.0649 (8)
H6	0.5885	0.1690	1.0995	0.078*
C7	0.6744 (3)	0.3674 (3)	0.96796 (15)	0.0488 (6)
C8	0.5078 (3)	0.2817 (3)	0.86956 (15)	0.0477 (6)
C9	0.5275 (3)	0.3838 (3)	0.72324 (15)	0.0537 (6)
H9A	0.4095	0.4293	0.7189	0.064*
H9B	0.5406	0.2851	0.7075	0.064*
C10	0.6419 (3)	0.4745 (3)	0.66582 (15)	0.0516 (6)
H10A	0.6101	0.4859	0.6096	0.062*
H10B	0.6331	0.5723	0.6822	0.062*
C11	0.9346 (3)	0.4733 (3)	0.61860 (16)	0.0522 (6)
H11A	0.9278	0.5730	0.6320	0.063*
H11B	0.9133	0.4804	0.5610	0.063*
C12	1.1067 (3)	0.3882 (3)	0.63208 (16)	0.0506 (6)
H12A	1.1936	0.4426	0.6014	0.061*

H12B	1.1243	0.3751	0.6904	0.061*
C13	1.2832 (3)	0.1611 (3)	0.61572 (16)	0.0529 (6)
H13A	1.3092	0.1538	0.6727	0.063*
H13B	1.3705	0.2077	0.5799	0.063*
C14	1.2803 (3)	0.0091 (3)	0.59436 (14)	0.0504 (6)
H14A	1.3887	-0.0529	0.6045	0.061*
H14B	1.1912	-0.0359	0.6297	0.061*
C15	1.2389 (3)	-0.1016 (3)	0.47501 (14)	0.0447 (6)
C16	1.2118 (3)	0.0483 (3)	0.33592 (14)	0.0454 (6)
C17	1.1796 (3)	0.0433 (2)	0.24907 (14)	0.0419 (5)
C18	1.2227 (3)	0.1595 (3)	0.19018 (15)	0.0527 (6)
H18	1.2684	0.2361	0.2062	0.063*
C19	1.1984 (3)	0.1624 (3)	0.10851 (16)	0.0610 (7)
H19	1.2299	0.2398	0.0693	0.073*
C20	1.1281 (3)	0.0520 (3)	0.08436 (16)	0.0618 (7)
H20	1.1120	0.0546	0.0289	0.074*
C21	1.0811 (3)	-0.0632 (3)	0.14224 (16)	0.0605 (7)
H21	1.0324	-0.1378	0.1260	0.073*
C22	1.1069 (3)	-0.0672 (3)	0.22467 (15)	0.0507 (6)
H22	1.0751	-0.1446	0.2638	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0807 (5)	0.0781 (5)	0.0659 (5)	-0.0445 (4)	-0.0032 (4)	-0.0115 (4)
S2	0.1467 (8)	0.0464 (4)	0.0494 (4)	-0.0296 (5)	-0.0275 (5)	0.0059 (3)
01	0.0906 (14)	0.0822 (14)	0.0503 (11)	-0.0502 (12)	-0.0123 (10)	0.0050 (10)
O2	0.0498 (10)	0.0443 (9)	0.0461 (9)	-0.0077 (8)	0.0014 (8)	0.0036 (7)
O3	0.0497 (10)	0.0457 (9)	0.0501 (10)	-0.0119 (8)	-0.0053 (7)	-0.0140 (8)
O4	0.1328 (18)	0.0430 (11)	0.0518 (11)	-0.0288 (11)	-0.0176 (11)	-0.0010 (9)
N1	0.0584 (14)	0.0572 (14)	0.0453 (13)	-0.0237 (11)	0.0023 (11)	-0.0054 (11)
N2	0.0468 (12)	0.0626 (14)	0.0431 (12)	-0.0214 (11)	0.0000 (10)	-0.0112 (10)
N3	0.0716 (15)	0.0397 (13)	0.0409 (12)	-0.0077 (11)	-0.0081 (10)	-0.0055 (10)
N4	0.0666 (14)	0.0372 (12)	0.0385 (11)	-0.0162 (10)	-0.0079 (9)	-0.0024 (9)
C1	0.0450 (13)	0.0445 (14)	0.0455 (14)	-0.0027 (11)	-0.0034 (11)	-0.0053 (11)
C2	0.0562 (15)	0.0556 (16)	0.0514 (15)	-0.0127 (13)	-0.0023 (12)	-0.0093 (12)
C3	0.0698 (18)	0.0677 (18)	0.0579 (17)	-0.0074 (15)	-0.0134 (14)	-0.0177 (15)
C4	0.076 (2)	0.078 (2)	0.0507 (17)	0.0048 (17)	-0.0169 (15)	-0.0081 (16)
C5	0.087 (2)	0.080 (2)	0.0591 (19)	-0.0181 (18)	-0.0171 (16)	0.0192 (16)
C6	0.0748 (19)	0.0598 (17)	0.0612 (18)	-0.0203 (15)	-0.0184 (15)	0.0077 (14)
C7	0.0483 (14)	0.0492 (15)	0.0496 (15)	-0.0124 (12)	-0.0012 (12)	-0.0062 (12)
C8	0.0461 (13)	0.0507 (15)	0.0486 (15)	-0.0121 (11)	0.0023 (11)	-0.0135 (12)
C9	0.0498 (15)	0.0667 (17)	0.0491 (15)	-0.0132 (13)	-0.0048 (12)	-0.0167 (13)
C10	0.0562 (15)	0.0521 (15)	0.0451 (14)	-0.0026 (12)	-0.0084 (12)	-0.0056 (12)
C11	0.0639 (16)	0.0404 (14)	0.0514 (15)	-0.0188 (12)	0.0041 (12)	0.0006 (11)
C12	0.0578 (15)	0.0444 (14)	0.0527 (15)	-0.0208 (12)	0.0023 (12)	-0.0082 (12)
C13	0.0527 (15)	0.0607 (16)	0.0485 (15)	-0.0100 (13)	-0.0065 (12)	-0.0144 (12)
C14	0.0612 (16)	0.0531 (15)	0.0379 (13)	-0.0040 (12)	-0.0102 (11)	-0.0100 (11)

C15	0.0512 (14)	0.0442 (14)	0.0399 (13)	-0.0115 (11)	-0.0051 (11)	-0.0044 (11)
C16	0.0543 (14)	0.0392 (14)	0.0426 (13)	-0.0097 (11)	-0.0041 (11)	-0.0023 (11)
C17	0.0440 (13)	0.0396 (13)	0.0399 (13)	-0.0052 (10)	-0.0027 (10)	-0.0009 (10)
C18	0.0591 (16)	0.0488 (15)	0.0492 (15)	-0.0153 (12)	-0.0033 (12)	0.0029 (12)
C19	0.0667 (18)	0.0656 (18)	0.0458 (16)	-0.0163 (15)	-0.0043 (13)	0.0132 (13)
C20	0.0631 (17)	0.080 (2)	0.0399 (14)	-0.0112 (15)	-0.0098 (13)	0.0033 (14)
C21	0.0691 (17)	0.0629 (17)	0.0527 (16)	-0.0161 (14)	-0.0134 (13)	-0.0059 (13)
C22	0.0572 (15)	0.0500 (15)	0.0434 (14)	-0.0135 (12)	-0.0065 (12)	0.0052 (11)
Geometric p	arameters (Å, °)					
S1—C8		1.665 (3)	С5—	H5	0.93	00
S2-C15		1.659 (2)	С6—	H6	0.93	00
O1—C7		1.220 (3)	С9—	·C10	1.49	2 (3)
O2-C10		1.417 (3)	С9—	H9A	0.97	00
O2-C11		1.424 (3)	С9—	H9B	0.97	00
O3—C12		1.419 (3)	C10-	-H10A	0.97	00
O3—C13		1.419 (3)	C10-	-H10B	0.97	00
O4—C16		1.222 (3)	C11–	C12	1.48	5 (3)
N1C7		1.366 (3)	C11–	-H11A	0.97	00
N1-C8		1.396 (3)	C11–	-H11B	0.97	00
N1—H1		0.79 (3)	C12-	-H12A	0.97	00
N2-C8		1.311 (3)	C12-	-H12B	0.97	00
N2-C9		1.446 (3)	C13–	C14	1.50	1 (3)
N2—H2		0.82 (3)	C13–	-H13A	0.97	00
N3—C15		1.310 (3)	C13–	-H13B	0.97	00
N3—C14		1.451 (3)	C14-	-H14A	0.97	00
N3—H3		0.83 (3)	C14-	-H14B	0.97	00
N4-C16		1.367 (3)	C16-	C17	1.48	6 (3)
N4—C15		1.404 (3)	C17-	C22	1.38	2 (3)
N4—H4		0.82 (3)	C17-	C18	1.38	6 (3)
C1—C6		1.382 (3)	C18-	C19	1.37	2 (4)
C1—C2		1.387 (3)	C18-	-H18	0.93	00
C1—C7		1.486 (3)	C19–	C20	1.36	9 (4)
С2—С3		1.375 (4)	C19–	-H19	0.93	00
C2—H2A		0.9300	C20-	C21	1.38	0 (4)
C3—C4		1.376 (4)	C20-	-H20	0.93	00
С3—НЗА		0.9300	C21-	C22	1.38	6 (4)
C4—C5		1.366 (4)	C21-	-H21	0.93	00
C4—H4A		0.9300	C22-	-H22	0.93	00
C5—C6		1.381 (4)				
C10—O2—C	211	113.12 (18)	H10A	А—С10—Н10В	108.	5
С12—О3—С	213	112.15 (18)	02—	-C11—C12	108.	43 (19)
C7—N1—C8	3	129.4 (2)	O2—	-C11—H11A	110.	0
C7—N1—H1	l	117.6 (19)	C12-	C11H11A	110.	0
C8—N1—H1	l	112.9 (19)	O2—	-C11—H11B	110.	0
C8—N2—C9)	124.1 (2)	C12-	C11H11B	110.	0
C8—N2—H2	2	117.9 (18)	H11A	А—С11—Н11В	108.	4
C9—N2—H2	2	117.9 (19)	03—	-C12—C11	109.	5 (2)

C15—N3—C14	122.6 (2)	O3—C12—H12A	109.8
C15—N3—H3	119 (2)	C11—C12—H12A	109.8
C14—N3—H3	118 (2)	O3—C12—H12B	109.8
C16—N4—C15	127.9 (2)	C11—C12—H12B	109.8
C16—N4—H4	118.1 (18)	H12A—C12—H12B	108.2
C15—N4—H4	113.8 (18)	O3—C13—C14	108.6 (2)
C6—C1—C2	118.7 (2)	O3—C13—H13A	110.0
C6—C1—C7	123.7 (2)	C14—C13—H13A	110.0
C2—C1—C7	117.6 (2)	O3—C13—H13B	110.0
C3—C2—C1	120.8 (3)	C14—C13—H13B	110.0
C3—C2—H2A	119.6	H13A—C13—H13B	108.4
C1—C2—H2A	119.6	N3—C14—C13	111.0 (2)
C2—C3—C4	119.8 (3)	N3—C14—H14A	109.4
С2—С3—НЗА	120.1	C13—C14—H14A	109.4
С4—С3—НЗА	120.1	N3—C14—H14B	109.4
C5—C4—C3	119.9 (3)	C13—C14—H14B	109.4
C5—C4—H4A	120.0	H14A—C14—H14B	108.0
C3—C4—H4A	120.0	N3—C15—N4	116.7 (2)
C4—C5—C6	120.5 (3)	N3—C15—S2	124.06 (19)
С4—С5—Н5	119.7	N4—C15—S2	119.18 (18)
С6—С5—Н5	119.7	O4—C16—N4	121.1 (2)
C5—C6—C1	120.2 (3)	O4—C16—C17	121.1 (2)
С5—С6—Н6	119.9	N4—C16—C17	117.8 (2)
С1—С6—Н6	119.9	C22—C17—C18	119.0 (2)
O1C7N1	121.3 (2)	C22—C17—C16	124.1 (2)
O1—C7—C1	121.7 (2)	C18—C17—C16	116.9 (2)
N1—C7—C1	117.0 (2)	C19—C18—C17	120.5 (3)
N2—C8—N1	116.1 (2)	C19—C18—H18	119.8
N2—C8—S1	125.2 (2)	C17—C18—H18	119.8
N1—C8—S1	118.66 (18)	C20-C19-C18	120.4 (2)
N2	110.6 (2)	C20—C19—H19	119.8
N2—C9—H9A	109.5	C18—C19—H19	119.8
С10—С9—Н9А	109.5	C19—C20—C21	120.1 (3)
N2—C9—H9B	109.5	C19—C20—H20	120.0
С10—С9—Н9В	109.5	C21—C20—H20	120.0
Н9А—С9—Н9В	108.1	C20—C21—C22	119.7 (3)
O2—C10—C9	107.14 (19)	C20—C21—H21	120.1
O2-C10-H10A	110.3	C22—C21—H21	120.1
С9—С10—Н10А	110.3	C17—C22—C21	120.3 (2)
O2-C10-H10B	110.3	C17—C22—H22	119.8
С9—С10—Н10В	110.3	C21—C22—H22	119.8
O2—C11—C12—O3	65.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N2—H2…O1	0.82 (3)	1.99 (3)	2.648 (3)	136 (2)
N3—H3…O4	0.83 (3)	2.01 (3)	2.632 (3)	132 (3)
$N4-H4\cdots O2^{i}$	0.82 (3)	2.48 (3)	3.290 (3)	170 (2)

Symmetry codes: (i) -x+2, -y, -z+1.

